- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Bray, Harrison (4)
-
Canary, Richard (3)
-
Kao, Lien-Yung (3)
-
Martone, Giuseppe (2)
-
Davis, Diana (1)
-
Lindsey, Kathryn (1)
-
Wu, Chenxi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bray, Harrison; Canary, Richard; Kao, Lien-Yung (, Algebraic & Geometric Topology)
-
Bray, Harrison; Canary, Richard; Kao, Lien-Yung; Martone, Giuseppe (, Journal für die reine und angewandte Mathematik (Crelles Journal))Abstract We show that if an eventually positive, non-arithmetic, locally Hölder continuous potential for a topologically mixingcountable Markov shift with (BIP) has an entropy gap at infinity,then one may apply the renewal theorem of Kesseböhmer and Kombrink to obtain counting and equidistributionresults. We apply these general results to obtain counting and equidistribution results for cusped Hitchinrepresentations, and more generally for cusped Anosov representations of geometrically finite Fuchsian groups.more » « less
-
Bray, Harrison; Davis, Diana; Lindsey, Kathryn; Wu, Chenxi (, Advances in Mathematics)
An official website of the United States government
